Complexity of solving parametric polynomial systems

نویسنده

  • Ali AYAD
چکیده

We present three algorithms in this paper: the first algorithm solves zero-dimensional parametric homogeneous polynomial systems with single exponential time in the number n of the unknowns, it decomposes the parameters space into a finite number of constructible sets and computes the finite number of solutions by parametric rational representations uniformly in each constructible set. The second algorithm factorizes absolutely multivariate parametric polynomials with single exponential time in n and in the degree upper bound d of the factorized polynomials. The third algorithm decomposes the algebraic varieties defined by parametric polynomial systems of positive dimension into absolutely irreducible components uniformly on the values of the parameters. The complexity bound of this algorithm is double-exponential in n. On the other hand, the complexity lower bound of the problem of resolution of parametric polynomial systems is double-exponential in n.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global optimization of mixed-integer polynomial programming problems: A new method based on Grobner Bases theory

Mixed-integer polynomial programming (MIPP) problems are one class of mixed-integer nonlinear programming (MINLP) problems where objective function and constraints are restricted to the polynomial functions. Although the MINLP problem is NP-hard, in special cases such as MIPP problems, an efficient algorithm can be extended to solve it. In this research, we propose an algorit...

متن کامل

An algorithm for solving zero-dimensional parametric systems of polynomial homogeneous equations

This paper presents a new algorithm for solving zero-dimensional parametric systems of polynomial homogeneous equations. This algorithm is based on the computation of what we call parametric U -resultants. The parameters space, i.e., the set of values of the parameters is decomposed into a finite number of constructible sets. The solutions of the input polynomial system are given uniformly in e...

متن کامل

A Survey on the Complexity of Solving Algebraic Systems

This paper presents a lecture on existing algorithms for solving polynomial systems with their complexity analysis from our experiments on the subject. It is based on our studies of the complexity of solving parametric polynomial systems. It is intended to be useful to two groups of people: those who wish to know what work has been done and those who would like to do work in the field. It conta...

متن کامل

Ja n 20 03 The Hardness of Polynomial Equation Solving ∗

Elimination theory is at the origin of algebraic geometry in the 19-th century and deals with algorithmic solving of multivariate polynomial equation systems over the complex numbers, or, more generally, over an arbitrary algebraically closed field. In this paper we investigate the intrinsic sequential time complexity of universal elimination procedures for arbitrary continuous data structures ...

متن کامل

Complexity of Algorithms for Computing Greatest Common Divisors of Parametric Univariate Polynomials

This paper presents a comparison between the complexity bounds of different algorithms for computing greatest common divisor of a finite set of parametric univariate polynomials. Each algorithm decomposes the parameters space into a finite number of constructible sets such that a greatest common divisor of the parametric univariate polynomials is given uniformly in each constructible set. The f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007